Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
AJNR Am J Neuroradiol ; 45(2): 218-223, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38216298

RESUMEN

BACKGROUND AND PURPOSE: While the adverse neurodevelopmental effects of prenatal opioid exposure on infants and children in the United States are well described, the underlying causative mechanisms have yet to be fully understood. This study aims to compare quantitative volumetric and surface-based features of the fetal brain between opioid-exposed fetuses and unexposed controls by using advanced MR imaging processing techniques. MATERIALS AND METHODS: This is a multi-institutional IRB-approved study in which pregnant women with and without opioid use during the current pregnancy were prospectively recruited to undergo fetal MR imaging. A total of 14 opioid-exposed (31.4 ± 2.3 weeks of gestation) and 15 unexposed (31.4 ± 2.4 weeks) fetuses were included. Whole brain volume, cortical plate volume, surface area, sulcal depth, mean curvature, and gyrification index were computed as quantitative features by using our fetal brain MR imaging processing pipeline. RESULTS: After correcting for gestational age, fetal sex, maternal education, polysubstance use, high blood pressure, and MR imaging acquisition site, all of the global morphologic features were significantly lower in the opioid-exposed fetuses compared with the unexposed fetuses, including brain volume, cortical volume, cortical surface area, sulcal depth, cortical mean curvature, and gyrification index. In regional analysis, the opioid-exposed fetuses showed significantly decreased surface area and sulcal depth in the bilateral Sylvian fissures, central sulci, parieto-occipital fissures, temporal cortices, and frontal cortices. CONCLUSIONS: In this small cohort, prenatal opioid exposure was associated with altered fetal brain development in the third trimester. This adds to the growing body of literature demonstrating that prenatal opioid exposure affects the developing brain.


Asunto(s)
Analgésicos Opioides , Imagen por Resonancia Magnética , Humanos , Niño , Embarazo , Femenino , Tercer Trimestre del Embarazo , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Edad Gestacional , Feto
3.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37885155

RESUMEN

Normal cortical growth and the resulting folding patterns are crucial for normal brain function. Although cortical development is largely influenced by genetic factors, environmental factors in fetal life can modify the gene expression associated with brain development. As the placenta plays a vital role in shaping the fetal environment, affecting fetal growth through the exchange of oxygen and nutrients, placental oxygen transport might be one of the environmental factors that also affect early human cortical growth. In this study, we aimed to assess the placental oxygen transport during maternal hyperoxia and its impact on fetal brain development using MRI in identical twins to control for genetic and maternal factors. We enrolled 9 pregnant subjects with monochorionic diamniotic twins (30.03 ± 2.39 gestational weeks [mean ± SD]). We observed that the fetuses with slower placental oxygen delivery had reduced volumetric and surface growth of the cerebral cortex. Moreover, when the difference between placenta oxygen delivery increased between the twin pairs, sulcal folding patterns were more divergent. Thus, there is a significant relationship between placental oxygen transport and fetal brain cortical growth and folding in monochorionic twins.


Asunto(s)
Placenta , Gemelos Monocigóticos , Femenino , Humanos , Embarazo , Desarrollo Fetal , Retardo del Crecimiento Fetal/metabolismo , Oxígeno/metabolismo , Placenta/diagnóstico por imagen , Placenta/metabolismo
4.
Ann Clin Transl Neurol ; 11(2): 278-290, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38009418

RESUMEN

OBJECTIVE: Persons with congenital heart disease (CHD) are at increased risk of neurodevelopmental disabilities, including impairments to executive function. Sulcal pattern features correlate with executive function in adolescents with single-ventricle heart disease and tetralogy of Fallot. However, the interaction of sulcal pattern features with genetic and participant factors in predicting executive dysfunction is unknown. METHODS: We studied sulcal pattern features, participant factors, and genetic risk for executive function impairment in a cohort with multiple CHD types using stepwise linear regression and machine learning. RESULTS: Genetic factors, including predicted damaging de novo or rare inherited variants in neurodevelopmental disabilities risk genes, apolipoprotein E genotype, and principal components of sulcal pattern features were associated with executive function measures after adjusting for age at testing, sex, mother's education, and biventricular versus single-ventricle CHD in a linear regression model. Using regression trees and bootstrap validation, younger participant age and larger alterations in sulcal pattern features were consistently identified as important predictors of decreased cognitive flexibility with left hemisphere graph topology often selected as the most important predictor. Inclusion of both sulcal pattern and genetic factors improved model fit compared to either alone. INTERPRETATION: We conclude that sulcal measures remain important predictors of cognitive flexibility, and the model predicting executive outcomes is improved by inclusion of potential genetic sources of neurodevelopmental risk. If confirmed, measures of sulcal patterning may serve as early imaging biomarkers to identify those at heightened risk for future neurodevelopmental disabilities.


Asunto(s)
Función Ejecutiva , Cardiopatías Congénitas , Adolescente , Humanos , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/psicología
5.
Front Pediatr ; 11: 1225960, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034827

RESUMEN

Background: A growing body of evidence suggests an association between a higher maternal pre-pregnancy body mass index (BMI) and adverse long-term neurodevelopmental outcomes for their offspring. Despite recent attention to the effects of maternal obesity on fetal and neonatal brain development, changes in the brain microstructure of preterm infants born to mothers with pre-pregnancy obesity are still not well understood. This study aimed to detect the changes in the brain microstructure of obese mothers in pre-pregnancy and their offspring born as preterm infants using diffusion tensor imaging (DTI). Methods: A total of 32 preterm infants (born to 16 mothers with normal BMI and 16 mothers with a high BMI) at <32 weeks of gestation without brain injury underwent brain magnetic resonance imaging at term-equivalent age (TEA). The BMI of all pregnant women was measured within approximately 12 weeks before pregnancy or the first 2 weeks of gestation. We analyzed the brain volume using a morphologically adaptive neonatal tissue segmentation toolbox and calculated the major white matter (WM) tracts using probabilistic maps of the Johns Hopkins University neonatal atlas. We investigated the differences in brain volume and WM microstructure between preterm infants of mothers with normal and high BMI. The DTI parameters were compared among groups using analysis of covariance adjusted for postmenstrual age at scan and multiple comparisons. Results: Preterm infants born to mothers with a high BMI showed significantly increased cortical gray matter volume (p = 0.001) and decreased WM volume (p = 0.003) after controlling for postmenstrual age and multiple comparisons. We found a significantly lower axial diffusivity in the uncinate fasciculus (UNC) in mothers with high BMI than that in mothers with normal BMI (1.690 ± 0.066 vs. 1.762 ± 0.101, respectively; p = 0.005). Conclusion: Our study is the first to demonstrate that maternal obesity impacts perinatal brain development patterns in preterm infants at TEA, even in the absence of apparent brain injury. These findings provide evidence for the detrimental effects of maternal obesity on brain developmental trajectories in offspring and suggest potential neurodevelopmental outcomes based on an altered UNC WM microstructure, which is known to be critical for language and social-emotional functions.

6.
J Autism Dev Disord ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37222965

RESUMEN

A significant number of individuals with tuberous sclerosis complex (TSC) exhibit language difficulties. Here, we examined the language-related brain morphometry in 59 participants (7 participants with TSC and comorbid autism spectrum disorder (ASD) (TSC + ASD), 13 with TSC but no ASD (TSC-ASD), 10 with ASD-only (ASD), and 29 typically developing (TD) controls). A hemispheric asymmetry was noted in surface area and gray matter volume of several cortical language areas in TD, ASD, and TSC-ASD groups, but not in TSC + ASD group. TSC + ASD group demonstrated increased cortical thickness and curvature values in multiple language regions for both hemispheres, compared to other groups. After controlling for tuber load in the TSC groups, within-group differences stayed the same but the differences between TSC-ASD and TSC + ASD were no longer statistically significant. These preliminary findings suggest that comorbid ASD in TSC as well as tuber load in TSC is associated with changes in the morphometry of language regions. Future studies with larger sample sizes will be needed to confirm these findings.

7.
Neuroimage Clin ; 37: 103357, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36878148

RESUMEN

Isolated cerebral ventriculomegaly (IVM) is the most common prenatally diagnosed brain anomaly occurs in 0.2-1 % of pregnancies. However, knowledge of fetal brain development in IVM is limited. There is no prenatal predictor for IVM to estimate individual risk of neurodevelopmental disability occurs in 10 % of children. To characterize brain development in fetuses with IVM and delineate their individual neuroanatomical variances, we performed comprehensive post-acquisition quantitative analysis of fetal magnetic resonance imaging (MRI). In volumetric analysis, brain MRI of fetuses with IVM (n = 20, 27.0 ± 4.6 weeks of gestation, mean ± SD) had revealed significantly increased volume in the whole brain, cortical plate, subcortical parenchyma, and cerebrum compared to the typically developing fetuses (controls, n = 28, 26.3 ± 5.0). In the cerebral sulcal developmental pattern analysis, fetuses with IVM had altered sulcal positional (both hemispheres) development and combined features of sulcal positional, depth, basin area, in both hemispheres compared to the controls. When comparing distribution of similarity index of individual fetuses, IVM group had shifted toward to lower values compared to the control. About 30 % of fetuses with IVM had no overlap with the distribution of control fetuses. This proof-of-concept study shows that quantitative analysis of fetal MRI can detect emerging subtle neuroanatomical abnormalities in fetuses with IVM and their individual variations.


Asunto(s)
Hidrocefalia , Embarazo , Femenino , Niño , Humanos , Hidrocefalia/diagnóstico por imagen , Encéfalo/anomalías , Feto/diagnóstico por imagen , Corteza Cerebral/patología , Imagen por Resonancia Magnética/métodos
8.
Dev Cell ; 57(20): 2381-2396.e13, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36228617

RESUMEN

Kinesins are canonical molecular motors but can also function as modulators of intracellular signaling. KIF26A, an unconventional kinesin that lacks motor activity, inhibits growth-factor-receptor-bound protein 2 (GRB2)- and focal adhesion kinase (FAK)-dependent signal transduction, but its functions in the brain have not been characterized. We report a patient cohort with biallelic loss-of-function variants in KIF26A, exhibiting a spectrum of congenital brain malformations. In the developing brain, KIF26A is preferentially expressed during early- and mid-gestation in excitatory neurons. Combining mice and human iPSC-derived organoid models, we discovered that loss of KIF26A causes excitatory neuron-specific defects in radial migration, localization, dendritic and axonal growth, and apoptosis, offering a convincing explanation of the disease etiology in patients. Single-cell RNA sequencing in KIF26A knockout organoids revealed transcriptional changes in MAPK, MYC, and E2F pathways. Our findings illustrate the pathogenesis of KIF26A loss-of-function variants and identify the surprising versatility of this non-motor kinesin.


Asunto(s)
Cinesinas , Neuronas , Humanos , Animales , Ratones , Cinesinas/genética , Neuronas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Apoptosis , Encéfalo/metabolismo
9.
Neuroimage ; 263: 119629, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115591

RESUMEN

Human fetal brains show regionally different temporal patterns of sulcal emergence following a regular timeline, which may be associated with spatiotemporal patterns of gene expression among cortical regions. This study aims to quantify the timing of sulcal emergence and its temporal variability across typically developing fetuses by fitting a logistic curve to presence or absence of sulcus. We found that the sulcal emergence started from the central to the temporo-parieto-occipital lobes and frontal lobe, and the temporal variability of emergence in most of the sulci was similar between 1 and 2 weeks. Small variability (< 1 week) was found in the left central and postcentral sulci and larger variability (>2 weeks) was shown in the bilateral occipitotemporal and left superior temporal sulci. The temporal variability showed a positive correlation with the emergence timing that may be associated with differential contributions between genetic and environmental factors. Our statistical analysis revealed that the right superior temporal sulcus emerged earlier than the left. Female fetuses showed a trend of earlier sulcal emergence in the right superior temporal sulcus, lower temporal variability in the right intraparietal sulcus, and higher variability in the right precentral sulcus compared to male fetuses. Our quantitative and statistical approach quantified the temporal patterns of sulcal emergence in detail that can be a reference for assessing the normality of developing fetal gyrification.


Asunto(s)
Caracteres Sexuales , Lóbulo Temporal , Humanos , Masculino , Femenino , Lóbulo Temporal/diagnóstico por imagen , Feto , Lóbulo Parietal , Lóbulo Frontal , Imagen por Resonancia Magnética , Corteza Cerebral/diagnóstico por imagen
10.
PLoS One ; 17(2): e0263535, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35202430

RESUMEN

Dandy-Walker malformation (DWM) is a common prenatally diagnosed cerebellar malformation, characterized by cystic dilatation of the fourth ventricle, upward rotation of the hypoplastic vermis, and posterior fossa enlargement with torcular elevation. DWM is associated with a broad spectrum of neurodevelopmental abnormalities such as cognitive, motor, and behavioral impairments, which cannot be explained solely by cerebellar malformations. Notably, the pathogenesis of these symptoms remains poorly understood. This study investigated whether fetal structural developmental abnormalities in DWM extended beyond the posterior fossa to the cerebrum even in fetuses without apparent cerebral anomalies. Post-acquisition volumetric fetal magnetic resonance imaging (MRI) analysis was performed in 12 fetuses with DWM and 14 control fetuses. Growth trajectories of the volumes of the cortical plate, subcortical parenchyma, cerebellar hemispheres, and vermis between 18 and 33 weeks of gestation were compared. The median (interquartile range) gestational ages at the time of MRI were 22.4 (19.4-24.0) and 23.9 (20.6-29.2) weeks in the DWM and control groups, respectively (p = 0.269). Eight of the 12 fetuses with DWM presented with associated cerebral anomalies, including hydrocephalus (n = 3), cerebral ventriculomegaly (n = 3), and complete (n = 2) and partial (n = 2) agenesis of the corpus callosum (ACC); 7 presented with extracerebral abnormalities. Chromosomal abnormalities were detected by microarray analysis in 4 of 11 fetuses with DWM, using amniocentesis. Volumetric analysis revealed that the cortical plate was significantly larger in fetuses with DWM than in controls (p = 0.040). Even without ACC, the subcortical parenchyma, whole cerebrum, cerebellar hemispheres, and whole brain were significantly larger in fetuses with DWM (n = 8) than in controls (p = 0.004, 0.025, 0.033, and 0.026, respectively). In conclusion, volumetric fetal MRI analysis demonstrated that the development of DWM extends throughout the brain during the fetal period, even without apparent cerebral anomalies.


Asunto(s)
Encéfalo/diagnóstico por imagen , Síndrome de Dandy-Walker/diagnóstico , Feto/diagnóstico por imagen , Hidrocefalia/diagnóstico , Encéfalo/patología , Síndrome de Dandy-Walker/diagnóstico por imagen , Síndrome de Dandy-Walker/patología , Desarrollo Embrionario/fisiología , Femenino , Feto/patología , Edad Gestacional , Humanos , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/patología , Imagen por Resonancia Magnética , Neuroimagen/métodos , Embarazo , Atención Prenatal , Diagnóstico Prenatal , Ultrasonografía Prenatal
11.
Front Neurosci ; 15: 714252, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34707474

RESUMEN

The accurate prediction of fetal brain age using magnetic resonance imaging (MRI) may contribute to the identification of brain abnormalities and the risk of adverse developmental outcomes. This study aimed to propose a method for predicting fetal brain age using MRIs from 220 healthy fetuses between 15.9 and 38.7 weeks of gestational age (GA). We built a 2D single-channel convolutional neural network (CNN) with multiplanar MRI slices in different orthogonal planes without correction for interslice motion. In each fetus, multiple age predictions from different slices were generated, and the brain age was obtained using the mode that determined the most frequent value among the multiple predictions from the 2D single-channel CNN. We obtained a mean absolute error (MAE) of 0.125 weeks (0.875 days) between the GA and brain age across the fetuses. The use of multiplanar slices achieved significantly lower prediction error and its variance than the use of a single slice and a single MRI stack. Our 2D single-channel CNN with multiplanar slices yielded a significantly lower stack-wise MAE (0.304 weeks) than the 2D multi-channel (MAE = 0.979, p < 0.001) and 3D (MAE = 1.114, p < 0.001) CNNs. The saliency maps from our method indicated that the anatomical information describing the cortex and ventricles was the primary contributor to brain age prediction. With the application of the proposed method to external MRIs from 21 healthy fetuses, we obtained an MAE of 0.508 weeks. Based on the external MRIs, we found that the stack-wise MAE of the 2D single-channel CNN (0.743 weeks) was significantly lower than those of the 2D multi-channel (1.466 weeks, p < 0.001) and 3D (1.241 weeks, p < 0.001) CNNs. These results demonstrate that our method with multiplanar slices accurately predicts fetal brain age without the need for increased dimensionality or complex MRI preprocessing steps.

12.
Cereb Cortex ; 31(10): 4670-4680, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34009260

RESUMEN

Neurodevelopmental disabilities are the most common noncardiac conditions in patients with congenital heart disease (CHD). Executive function skills have been frequently observed to be decreased among children and adults with CHD compared with peers, but a neuroanatomical basis for the association is yet to be identified. In this study, we quantified sulcal pattern features from brain magnetic resonance imaging data obtained during adolescence among 41 participants with tetralogy of Fallot (ToF) and 49 control participants using a graph-based pattern analysis technique. Among patients with ToF, right-hemispheric sulcal pattern similarity to the control group was decreased (0.7514 vs. 0.7553, P = 0.01) and positively correlated with neuropsychological testing values including executive function (r = 0.48, P < 0.001). Together these findings suggest that sulcal pattern analysis may be a useful marker of neurodevelopmental risk in patients with CHD. Further studies may elucidate the mechanisms leading to different alterations in sulcal patterning.


Asunto(s)
Función Ejecutiva , Tetralogía de Fallot/diagnóstico por imagen , Tetralogía de Fallot/psicología , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Estudios de Casos y Controles , Corteza Cerebral/diagnóstico por imagen , Niño , Discapacidades del Desarrollo/fisiopatología , Discapacidades del Desarrollo/psicología , Femenino , Cardiopatías Congénitas , Humanos , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Adulto Joven
13.
Cereb Cortex ; 31(8): 3610-3621, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33836056

RESUMEN

The relationship between structural changes of the cerebral cortex revealed by Magnetic Resonance Imaging (MRI) and gene expression in the human fetal brain has not been explored. In this study, we aimed to test the hypothesis that relative regional thickness (a measure of cortical evolving organization) of fetal cortical compartments (cortical plate [CP] and subplate [SP]) is associated with expression levels of genes with known cortical phenotype. Mean regional SP/CP thickness ratios across age measured on in utero MRI of 25 healthy fetuses (20-33 gestational weeks [GWs]) were correlated with publicly available regional gene expression levels (23-24 GW fetuses). Larger SP/CP thickness ratios (more pronounced cortical evolving organization) was found in perisylvian regions. Furthermore, we found a significant association between SP/CP thickness ratio and expression levels of the FLNA gene (mutated in periventricular heterotopia, congenital heart disease, and vascular malformations). Further work is needed to identify early MRI biomarkers of gene expression that lead to abnormal cortical development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/embriología , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/embriología , Adulto , Encéfalo/diagnóstico por imagen , Corteza Cerebral/anomalías , Femenino , Feto/diagnóstico por imagen , Feto/metabolismo , Filaminas/genética , Expresión Génica/genética , Expresión Génica/fisiología , Edad Gestacional , Cabeza , Humanos , Imagen por Resonancia Magnética , Red Nerviosa/metabolismo , Embarazo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transcriptoma
14.
J Am Heart Assoc ; 10(7): e018580, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33745293

RESUMEN

Background Children operated on for a simple congenital heart defect (CHD) are at risk of neurodevelopmental abnormalities. Abnormal cortical development and folding have been observed in fetuses with CHD. We examined whether sulcal folding patterns in adults operated on for simple CHD in childhood differ from those of healthy controls, and whether such differences are associated with neuropsychological outcomes. Methods and Results Patients (mean age, 24.5 years) who underwent childhood surgery for isolated atrial septal defect (ASD; n=33) or ventricular septal defect (VSD; n=30) and healthy controls (n=37) were enrolled. Sulcal pattern similarity to healthy controls was determined using magnetic resonance imaging and looking at features of sulcal folds, their intersulcal relationships, and sulcal graph topology. The sulcal pattern similarity values were tested for associations with comprehensive neuropsychological scores. Patients with both ASD and VSD had decreased sulcal pattern similarity in the left hemisphere compared with controls. The differences were found in the left temporal lobe in the ASD group and in the whole left hemisphere in the VSD group (P=0.033 and P=0.039, respectively). The extent of abnormal left hemispheric sulcal pattern similarity was associated with worse neuropsychological scores (intelligence, executive function, and visuospatial abilities) in the VSD group, and special educational support in the ASD group. Conclusions Adults who underwent surgery for simple CHD in childhood display altered left hemisphere sulcal folding patterns, commensurate with neuropsychological scores for patients with VSD and special educational support for ASD. This may indicate that simple CHD affects early brain development. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03871881.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos/efectos adversos , Corteza Cerebral/diagnóstico por imagen , Función Ejecutiva/fisiología , Defectos del Tabique Interatrial/cirugía , Defectos del Tabique Interventricular/cirugía , Inteligencia/fisiología , Trastornos del Neurodesarrollo/diagnóstico , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Estudios Transversales , Femenino , Estudios de Seguimiento , Predicción , Cardiopatías Congénitas/cirugía , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/fisiopatología , Complicaciones Posoperatorias , Estudios Prospectivos , Adulto Joven
15.
Cereb Cortex ; 31(2): 757-767, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32940649

RESUMEN

Down syndrome (DS) is the most common genetic cause of developmental disabilities. Advanced analysis of brain magnetic resonance imaging (MRI) has been used to find brain abnormalities and their relationship to neurocognitive impairments in children and adolescents with DS. Because genetic factors affect brain development in early fetal life, there is a growing interest in analyzing brains from living fetuses with DS. In this study, we investigated regional sulcal folding depth as well as global cortical gyrification from fetal brain MRIs. Nine fetuses with DS (29.1 ± 4.24 gestational weeks [mean ± standard deviation]) were compared with 17 typically developing [TD] fetuses (28.4 ± 3.44). Fetuses with DS showed lower whole-brain average sulcal depths and gyrification index than TD fetuses. Significant decreases in sulcal depth were found in bilateral Sylvian fissures and right central and parieto-occipital sulci. On the other hand, significantly increased sulcal depth was shown in the left superior temporal sulcus, which is related to atypical hemispheric asymmetry of cortical folding. Moreover, these group differences increased as gestation progressed. This study demonstrates that regional sulcal depth is a sensitive marker for detecting alterations of cortical development in DS during fetal life, which may be associated with later neurocognitive impairment.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Síndrome de Down/diagnóstico por imagen , Feto/diagnóstico por imagen , Adolescente , Adulto , Corteza Cerebral/embriología , Desarrollo Fetal , Edad Gestacional , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Edad Materna , Neuroimagen , Adulto Joven
16.
Cereb Cortex ; 31(4): 1888-1897, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33230560

RESUMEN

Intergenerational effects are described as the genetic, epigenetic, as well as pre- and postnatal environmental influence parents have on their offspring's behavior, cognition, and brain. During fetal brain development, the primary cortical sulci emerge with a distinctive folding pattern that are under strong genetic influence and show little change of this pattern throughout postnatal brain development. We examined intergenerational transmission of cortical sulcal patterns by comparing primary sulcal patterns between children (N = 16, age 5.5 ± 0.81 years, 8 males) and their biological mothers (N = 15, age 39.72 ± 4.68 years) as well as between children and unrelated adult females. Our graph-based sulcal pattern comparison method detected stronger sulcal pattern similarity for child-mother pairs than child-unrelated pairs, where higher similarity between child-mother pairs was observed mostly for the right lobar regions. Our results also show that child-mother versus child-unrelated pairs differ for daughters and sons with a trend toward significance, particularly for the left hemisphere lobar regions. This is the first study to reveal significant intergenerational transmission of cortical sulcal patterns, and our results have important implications for the study of the heritability of complex behaviors, brain-based disorders, the identification of biomarkers, and targets for interventions.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/crecimiento & desarrollo , Desarrollo Infantil/fisiología , Imagen por Resonancia Magnética/tendencias , Relaciones Madre-Hijo , Adulto , Niño , Femenino , Humanos , Masculino
17.
Front Neurosci ; 14: 591683, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343286

RESUMEN

Fetal magnetic resonance imaging (MRI) has the potential to advance our understanding of human brain development by providing quantitative information of cortical plate (CP) development in vivo. However, for a reliable quantitative analysis of cortical volume and sulcal folding, accurate and automated segmentation of the CP is crucial. In this study, we propose a fully convolutional neural network for the automatic segmentation of the CP. We developed a novel hybrid loss function to improve the segmentation accuracy and adopted multi-view (axial, coronal, and sagittal) aggregation with a test-time augmentation method to reduce errors using three-dimensional (3D) information and multiple predictions. We evaluated our proposed method using the ten-fold cross-validation of 52 fetal brain MR images (22.9-31.4 weeks of gestation). The proposed method obtained Dice coefficients of 0.907 ± 0.027 and 0.906 ± 0.031 as well as a mean surface distance error of 0.182 ± 0.058 mm and 0.185 ± 0.069 mm for the left and right, respectively. In addition, the left and right CP volumes, surface area, and global mean curvature generated by automatic segmentation showed a high correlation with the values generated by manual segmentation (R 2 > 0.941). We also demonstrated that the proposed hybrid loss function and the combination of multi-view aggregation and test-time augmentation significantly improved the CP segmentation accuracy. Our proposed segmentation method will be useful for the automatic and reliable quantification of the cortical structure in the fetal brain.

18.
Cereb Cortex ; 30(9): 4790-4799, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32307538

RESUMEN

Hypogenesis (hCC) and dysgenesis (dCC) of the corpus callosum (CC) are characterized by its smaller size or absence. The outcomes of these patients vary considerably and are unrelated to the size of the CC abnormality. The aim of the current study was to characterize the sulcal pattern in children with hCC and dCC and to explore its relation to clinical outcome. We used quantitative sulcal pattern analysis that measures deviation (similarity index, SI) of the composite or individual sulcal features (position, depth, area, and graph topology) compared to the control group. We calculated SI for each hemisphere and lobe in 11 children with CC disorder (hCC = 4, dCC = 7) and 15 controls. hCC and dCC had smaller hemispheric SI compared to controls. dCC subjects had smaller regional SI in the frontal and occipital lobes, which were driven by a smaller SI in a position or a graph topology. The significantly decreased SI gradient was found across groups only in the sulcal graph topology of the temporal lobes (controls > hCC > dCC) and was related to clinical outcome. Our results suggest that careful examination of sulcal pattern in hCC and dCC patients could be a useful biomarker of outcome.


Asunto(s)
Agenesia del Cuerpo Calloso/complicaciones , Agenesia del Cuerpo Calloso/patología , Trastornos de la Conducta Infantil/etiología , Trastornos del Neurodesarrollo/etiología , Niño , Preescolar , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino
19.
Cereb Cortex ; 30(7): 4257-4268, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32219376

RESUMEN

Sulcal pits are thought to represent the first cortical folds of primary sulci during neurodevelopment. The uniform spatial distribution of sulcal pits across individuals is hypothesized to be predetermined by a human-specific protomap which is related to functional localization under genetic controls in early fetal life. Thus, it is important to characterize temporal and spatial patterns of sulcal pits in the fetal brain that would provide additional information of functional development of the human brain and crucial insights into abnormal cortical maturation. In this paper, we investigated temporal patterns of emergence and spatial distribution of sulcal pits using 48 typically developing fetal brains in the second half of gestation. We found that the position and spatial variance of sulcal pits in the fetal brain are similar to those in the adult brain, and they are also temporally uniform against dynamic brain growth during fetal life. Furthermore, timing of pit emergence shows a regionally diverse pattern that may be associated with the subdivisions of the protomap. Our findings suggest that sulcal pits in the fetal brain are useful anatomical landmarks containing detailed information of functional localization in early cortical development and maintaining their spatial distribution throughout the human lifetime.


Asunto(s)
Corteza Cerebral/embriología , Desarrollo Fetal/fisiología , Adolescente , Adulto , Encéfalo/embriología , Femenino , Feto , Humanos , Masculino , Embarazo , Segundo Trimestre del Embarazo , Tercer Trimestre del Embarazo , Análisis Espacio-Temporal , Adulto Joven
20.
Cereb Cortex ; 30(2): 476-487, 2020 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-31216004

RESUMEN

Neurodevelopmental abnormalities are the most common noncardiac complications in patients with congenital heart disease (CHD). Prenatal brain abnormalities may be due to reduced oxygenation, genetic factors, or less commonly, teratogens. Understanding the contribution of these factors is essential to improve outcomes. Because primary sulcal patterns are prenatally determined and under strong genetic control, we hypothesized that they are influenced by genetic variants in CHD. In this study, we reveal significant alterations in sulcal patterns among subjects with single ventricle CHD (n = 115, 14.7 ± 2.9 years [mean ± standard deviation]) compared with controls (n = 45, 15.5 ± 2.4 years) using a graph-based pattern-analysis technique. Among patients with CHD, the left hemisphere demonstrated decreased sulcal pattern similarity to controls in the left temporal and parietal lobes, as well as the bilateral frontal lobes. Temporal and parietal lobes demonstrated an abnormally asymmetric left-right pattern of sulcal basin area in CHD subjects. Sulcal pattern similarity to control was positively correlated with working memory, processing speed, and executive function. Exome analysis identified damaging de novo variants only in CHD subjects with more atypical sulcal patterns. Together, these findings suggest that sulcal pattern analysis may be useful in characterizing genetically influenced, atypical early brain development and neurodevelopmental risk in subjects with CHD.


Asunto(s)
Cerebro/patología , Cardiopatías Congénitas/complicaciones , Trastornos del Neurodesarrollo/etiología , Adolescente , Cerebro/diagnóstico por imagen , Femenino , Cardiopatías Congénitas/genética , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/psicología , Pruebas Neuropsicológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...